On the Stability of Time-Harmonic Localized States in a Disordered Nonlinear Medium
نویسندگان
چکیده
We study the problem of localization in a disordered one-dimensional nonlinear medium modeled by the nonlinear Schr6dinger equation. Devillard and SouiUard have shown that almost every time-harmonic solution of this random PDE exhibits localization. We consider the temporal stability of such timeharmonic solutions and derive bounds on the location of any unstable eigenvalues. By direct numerical determination of the eigenvalues we show that these time-harmonic solutions are typically unstable, and find the distribution of eigenvalues in the complex plane. The distributions are distinctly different for focusing and defocusing nonlinearities. We argue further that these instabilities are connected with resonances in a Schr6dinger problem, and interpret the earlier numerical simulations of Caputo, Newell, and Shelley, and of Shelley in terms of these instabilities. Finally, in the defocusing case we are able to construct a family of asymptotic solutions which includes the stable limiting time-harmonic state observed in the simulations of Shelley.
منابع مشابه
Nonlinear vibration analysis of axially moving strings in thermal environment
In this study, nonlinear vibration of axially moving strings in thermal environment is investigated. The vibration haracteristics of the system such as natural frequencies, time domain response and stability states are studied at different temperatures. The velocity of the axial movement is assumed to be constant with minor harmonic variations. It is presumed that the system and the environment...
متن کاملDynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method
This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...
متن کاملModified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation
Nonlinear vibration behavior of beam is an important issue of structural engineering. In this study, a mathematical modeling of a forced nonlinear vibration of Euler-Bernoulli beam resting on nonlinear elastic foundation is presented. The nonlinear vibration behavior of the beam is investigated by using a modified multi-level residue harmonic balance method. The main advantage of the method is ...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملNonlinear Vibration Analysis of Embedded Multiwalled Carbon Nanotubes in Thermal Environment
In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotub...
متن کامل